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A complete description of how a protein folds requires the char-
acterization of intermediate conformations traversed during the
folding transition. We have calculated dynamics trajectories of a
simplified model of the Fyn SH3 domain with a native-centric
potential energy function. Analysis of the resulting site-resolved
energy trajectory identifies an ensemble of intermediate confor-
mations for folding and another for unfolding. The model’s folding
intermediate is structured in the three �-strands that make up the
protein’s core and is strikingly similar to intermediates detected in
a recent NMR study of Fyn SH3 folding and to folding transition
states elucidated in mutagenesis studies of SH3 domains. The
unfolding intermediate is formed by dissociation of the folded
protein’s two terminal �-strands from its core. The presence of such
an intermediate is consistent with the results of a protein-engi-
neering study on the src SH3 domain showing that these strands
separate before the rate-limiting step of unfolding. Despite the
presence of these conformations intermediate between the native
and fully unfolded states, the computed heat capacity vs. temper-
ature profile of the model protein indicates that its thermodynam-
ics satisfies the usual calorimetric criterion for two-state folding.
This observation highlights the fact that, if not properly inter-
preted, methods such as calorimetry that do not probe multiple
sites in a molecule can lead to an oversimplified view of folding.
The close agreement between results from this simplified model
and experimental work underscores the important contributions
that computational methods can make in providing insights into
protein folding.

Understanding protein folding at the atomic level is a critical
but elusive goal in structural biology. A protein’s folded

state can often be studied by x-ray crystallography or NMR
spectroscopy, and recent developments in NMR methodology
have made it possible to also characterize the unfolded state (1,
2). However, the transition between these states is difficult to
study because intermediate conformations are most often only
transiently populated. Experimentally, structural characteriza-
tion of intermediates is therefore limited to indirect measure-
ments. For example, a protein’s folding transition state can be
probed by studying the effects of single-residue mutations on
folding and unfolding rates (3). Measurements of a protein’s
native state hydrogen-exchange rates can be used to identify
partially unfolded substructures that cooperatively unfold. In
some cases, such substructures may then be interpreted to form
sequentially during the overall folding process (4). Computa-
tional techniques are not limited to indirect measurements, in
principle permitting the examination of every conformation a
protein passes through as it folds (5, 6). These methods are
instead limited both by the accuracy of the force field that is used
to evolve the system and by resources: many transitions between
unfolded and folded states must be studied to accurately char-
acterize a protein’s folding reaction, but it is currently a major
accomplishment to observe even a single transition in an all-
atom molecular dynamics simulation.

Simplified computational models have emerged as a valuable
investigative tool, allowing efficient generation of model protein-

folding data with relatively limited computational resources.
These models have fewer independent particles and simpler
potential energy functions than are used in all-atom molecular
dynamics simulations, facilitating more thorough sampling of
conformational space. Results from simplified models have
strongly influenced the way we conceptualize protein folding,
recasting the problem in terms of energy landscapes and folding
funnels (7–9). The relative effects of nonlocal interactions, local
conformational preferences, and desolvation barriers on the
folding transition have been investigated by testing a variety of
representations of proteins (10–14). Advances in our under-
standing of protein folding have led to simplified models that
behave more like real proteins, that exhibit thermodynamic
folding cooperativity, and that can produce two-state-like fold-
ing and unfolding kinetics (14, 15).

In this work we have studied the folding and unfolding
pathways of the SH3 domain from Fyn tyrosine kinase, a
59-residue domain that adopts a �-sandwich fold (16). By using
the continuum (off-lattice) native-centric construct recently
shown to exhibit protein-like thermodynamic cooperativity (14),
transient intermediates are identified here in both the folding
and unfolding transitions of Fyn SH3. By applying covariance
analysis to potential energy data collected on a site-resolved
basis during simulation of the unfolded protein, we have iden-
tified a group of residues that collectively form native-like
structure before any other part of the protein. This partially
structured intermediate is unstable and would not be expected
to accumulate during the folding reaction and, in this respect, is
different from those folding intermediates that are traditionally
defined and identified by their accumulated populations (17, 18).
Instead, the intermediates observed in the present study are
more akin to the sparsely populated ‘‘hidden’’ intermediates
inferred from native-state hydrogen-exchange experiments (4,
19, 20). Similarly, a partially unstructured intermediate on the
protein’s unfolding pathway was identified in trajectories of the
folded protein. A description of each of these intermediates was
obtained by collecting characteristic structures from the simu-
lation data. Most importantly, the structures that are produced
share many features with those generated on the basis of
experiment (21–26). The present study demonstrates the utility
of supplementing experiment with simulation and illustrates the
important role that simplified protein models can play in in-
creasing our understanding of protein folding.

Methods
Native-Centric Topological Modeling. Dynamics trajectories of a
model Fyn SH3 molecule were computed with a topological
modeling program published by Kaya and Chan (14). All pa-
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rameter values were taken from their work. No desolvation
barrier was included in the present potential energy function.

The model is coarse-grained, specifying protein conformation
entirely by the positions of the C� atoms. Motion and energetics
are simulated by using Langevin dynamics with a native-centric
potential energy function. Local energy terms are based on
distances, angles, and dihedrals between adjacent C� atoms in
the protein chain. Native-like nonlocal contacts between resi-
dues are subject to a 10–12 Lennard-Jones potential, whereas
nonnative nonlocal interactions are repulsive. Minima in all
energy terms are positioned to match distances, angles, and
dihedrals observed in a native reference structure of the protein,
and native contacts between residues are identified by using this
structure. In this work, an x-ray crystal structure [PDB ID code
1SHF (27), chain B] served as the reference, and 145 native
contacts were obtained by using the CSU program (28).

Two versions of the modeling program were used. One records
a histogram containing the value of the potential energy function
at every time step for use in simulated calorimetry. A second
version calculates a separate potential energy for each residue by
assigning an equal portion of each interaction energy to each of
the involved residues. The energy of each residue is averaged
over blocks (periods) of 400 simulation steps and recorded at the
end of each averaging period for use in a covariance analysis. The
Cartesian coordinates of each residue’s C� atom are similarly
averaged and recorded in parallel to the energy data for use in
a structural analysis of intermediates.

Each simulation is 200 million time steps in length and runs in
�36 h on a 1.7-GHz AMD processor (Advanced Micro Devices,
Sunnyvale, CA). Data from the first million steps is discarded to
allow for equilibration. The simulation’s energy autocorrelation
time was measured to be 5,200 � 1,500 steps over a wide range
of Langevin dynamics temperatures. The energy-scaling factor �
(as defined in ref. 14) was the same for all kinetic simulations.

Separation of Data from the Folded and Unfolded States. Prior to
covariance analysis, simulation data were separated into subsets,
depending on the state (folded or unfolded) of the model protein
by using the following procedure: First, average state energies,
Efolded � Eunfolded, are extracted from potential energy data by
numerically minimizing

R � �
t�1

Nsamp

min��E� t� � E folded�
2, �E� t� � Eunfolded�

2� ,

where E(t) is the model’s overall potential energy measured
during sampling period t, Nsamp is the number of sampling
periods, and the min function returns the lesser of its arguments.
Second, the data are scanned for folding transitions, which are
identified when the overall potential energy subsequently crosses
thresholds at E � Efolded and E � Eunfolded. Data collected during
transitions are discarded, and sampling periods between transi-
tions are assigned to the appropriate data subset.

Intermediate Structural Ensembles. Ensembles of structures repre-
sentative of the endpoints of energy-f luctuation modes from the
covariance analysis were collected as described in Theoretical
Considerations. Each ensemble constitutes 1% of the structures
observed during the relevant simulation trajectory. The struc-
tures were aligned by using a best-fit rotation (29), taking a
selected element of secondary structure as a reference point. A
subset of 50 structures with approximately the same mean and
standard deviation in each particle coordinate as the full en-
semble was then selected by using a Monte Carlo procedure.
These 50 structures were plotted to visually represent interme-
diate states. A detailed description of this procedure is included

in the supporting information, which is published on the PNAS
web site.

Simulated Calorimetry. The thermodynamic folding cooperativity
of the native-centric Fyn SH3 model was tested with a multiple-
histogram simulated calorimetry method (30), because we found
that single-simulation histogram techniques (31, 32) were not
adequate for the present model. Here, a model protein’s density
of states as a function of energy, n(E), is determined approxi-
mately from histograms of potential energy values observed
during multiple simulations run at Ntemp different temperatures.
The data are combined according to

n�E� �

�
i�1

Ntemp

gi
	1h�E , Ti�

�
j�1

Ntemp

Njgj
	1 exp[	E�Tj � f�Tj�]

, [1]

where h(E, Ti) is the number of conformations with energy E
observed during a simulation at temperature Ti (energy histo-
gram), Ni � ¥E h(E, Ti), f(Ti) is the free energy at temperature
Ti, and the Boltzmann constant kB has been set equal to 1. The
factor gi � 1 
 2�ac, i, where �ac,i is the energy autocorrelation
time at temperature Ti, is included to account for the fact that
successive samples from a simulation are not fully independent.
To obtain �ac, i, an exponential decay is fit to the simulation’s
energy autocorrelation function: �EtEt
�� � exp(	���ac). When
folding transitions are present in a data set, the autocorrelation
function must be fit to a sum of two exponentials to separate �ac, i
from the slower folding correlation time. The free energies are
defined by exp[f(Ti)] � ¥E n(E) exp(	E�Ti) and can be
determined by iteration between this equation and Eq. 1 (30).

This n(E) is then used to evaluate the protein’s heat capacity
as a function of temperature, CP(T), which can be interpreted as
the results of a calorimetry experiment. After a baseline sub-
traction (11), the CP(T) curve is analyzed to determine the
calorimetric enthalpy of folding, Hcal � � CP(T)dT, and the
van’t Hoff enthalpy of folding, HvH � 2Tmax �CP(Tmax), where
Tmax is the temperature at which CP(T) is maximal. The ratio of
these enthalpies, � � HvH�Hcal, is a measure of the cooper-
ativity of the protein’s folding transition; � � 1 is consistent with
a two-state folding model. (Note that � � �2

(s) as defined in
ref. 11.)

Results and Discussion
Theoretical Considerations. Covariance analysis, also known as
essential dynamics or principal component analysis, identifies
correlations between multiple fluctuating variables in sampled
numerical data (33). It is routinely applied to atomic coordinate
data from molecular dynamics simulations to find favored modes
of conformational f luctuation (34) and to native-centric mod-
eling of the dynamics of the folded state (35–37). We have
attempted a similar analysis of C� coordinate trajectory data
from our native-centric Fyn SH3 domain model (which is
described in Methods) by using an algorithm from the literature
(33, 34). Before covariance analysis, data must be processed to
remove overall translations and rotations of the model protein,
which strongly interfere with the identification of coordinated
internal motions. However, the present investigation of the
folding�unfolding transition requires the consideration of highly
disordered conformations. Their presence precludes a straight-
forward removal of overall rotations and consequently makes it
difficult to gain insight through coordinate-based principal com-
ponent analysis.

This difficulty led us to a different approach. Here, covariance
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analysis is applied in the energy regime rather than the coordi-
nate regime. In the analysis below, we use the technique to treat
site-resolved energy trajectory data from the Fyn SH3 model.
Motions irrelevant to folding cannot interfere with such an
analysis because they do not change the model’s energy. The
simulation produces energy data of the form E� (t) � ¥i�1

Nres ei(t)êi,
where Nres is the number of residues in the protein, ei(t) is the
energy of residue i measured during sampling period t, êi is a unit
vector for the energy of residue i, and t � 1, . . . , Nsamp, where
Nsamp is the number of sampling periods. Variations in residue
energies during the simulation cause fluctuations in the displace-
ment of E� (t) from its average position. According to Garcı́a’s
derivation (33), the object of covariance analysis is to determine
the most probable direction of this displacement by finding the
unit vector v̂ that maximizes

f�v̂� �
1

N samp
�
t�1

Nsamp

��E� � t� � E� av� �v̂�2, [2]

where E� av � Nsamp
	1 ¥t�1

Nsamp E� (t). This expression can be simplified
to f(v̂) � (Cv̂)�v̂ where C is the residue energy covariance matrix:

C �
1

N samp
�
t�1

Nsamp

�E� � t� � E� av��E� � t� � E� av�
†. [3]

In the supporting information we show that f(v̂) is maximal for
vectors v̂ that satisfy Cv̂ � �v̂, i.e., for eigenvectors of the
covariance matrix. Because C is symmetric, it will always be
possible to find Nres orthonormal eigenvectors v̂1,v̂2, . . . , v̂Nres

with corresponding eigenvalues �1, �2, . . . , �Nres
. Note that

f(v̂n) � �n for these vectors, so that by Eq. 2, eigenvalue �n gives
the mean square projection of (E� (t) 	 E� av) along eigenvector v̂n.
The eigenvalues will therefore always be positive. We sort the
eigenvectors in order of decreasing eigenvalue, so that f(v̂1) is the
global maximum of f(v̂) and f(v̂2), . . . , f(v̂Nres

) are lesser maxima
of decreasing significance.

The eigenvectors and eigenvalues contain valuable data on the
model protein’s exploration of conformational space. Each v̂n
describes a mode of energy fluctuation favored by the model
protein to an extent indicated by �n. This energy fluctuation
must be driven by some fluctuation in the protein’s conforma-
tion, the nature of which can be examined when the eigenvector
is expressed in the basis of residue energies: v̂n � ¥i�1

Nres vn,iêi. Each
component vn,i of v̂n reveals how the conformational f luctuation
affects a different residue in the model protein. The magnitude
of vn,i indicates how strongly the fluctuation affects the potential
energy of residue i, and the relative signs of vn,i and vn, j indicate
whether the fluctuation leads to a correlated or anticorrelated
change in the energies of residues i and j. All covariance analysis
results presented here were tested for convergence by using a
procedure described in supporting information.

Although analysis of the eigenvectors efficiently identifies the
model protein’s dominant modes of conformational f luctuation,
it is preferable to consider coordinate data when drawing
conclusions about structure. We therefore wish to relate the
covariance analysis results to coordinate data recorded in par-
allel to the energy data. Energy data E� (t) can be transformed
from the residue energy basis {êi} to a basis of eigenvectors {v̂n}
by using the same unitary transformation U that diagonalizes C
(see supporting information). Thus, UE� (t) � ¥n�1

Nres �n(t)v̂n,
where �n(t) � ¥i�1

Nres (v̂n�êi)ei(t) is the projection of the model
protein’s energy along eigenvector v̂n during sampling period t.
Extremal points on the �n(t) trajectory correspond to maximal
conformational excursions associated with mode v̂n. By retriev-
ing coordinate data from those 1% of sampling periods t with the
greatest values of �n(t) we can collect an ensemble of structures

characteristic of one endpoint of the fluctuation. The other
endpoint can be characterized by selecting periods for which
�n(t) is smallest. The structures are then aligned relative to some
element of the model protein’s secondary structure, and a
representative subset is selected for display and analysis. A
detailed description of this procedure is presented in supporting
information.

Covariance Analysis Identifies Transient Protein-Folding Intermedi-
ates. Site-resolved energy data were recorded during a single
simulation of the native-centric Fyn SH3 model near its folding
midpoint temperature. Fig. 1 shows typical data for a small
portion of the trajectory. The model’s overall potential energy
(Fig. 1 A) exhibits only two stable states, folded and unfolded,
and each of the 145 observed transitions between these states is
rapid. The potential energy of each residue in the model protein
similarly shows two distinct states, and abrupt transitions be-
tween folded and unfolded occur synchronously for all residues.
Despite the concerted nature of the transitions, significant
variations in energetics exist between different sites. Some
residues in the hydrophobic core (e.g., residue 38, Fig. 1B)
exhibit large energy fluctuations while the protein is unfolded,
with energies briefly reaching average values for the folded
configuration. The fluctuations of several core residues seem to
be correlated (e.g., the residues in strand �3), suggesting a
cooperative process. Likewise, residues in the N- and C-terminal
strands (e.g., residue 5, Fig. 1C) undergo large, coordinated
energy fluctuations while the protein is folded.

Covariance analysis was used to quantitatively characterize
correlations in the site-resolved energy data. Because the model
is native-centric, any major energy change must involve the

Fig. 1. Potential energy data from a portion of a dynamics trajectory of a
simplified model of the Fyn SH3 domain (see Methods). The data are plotted
as a function of simulation time for the model protein as a whole (A), residue
38 in the hydrophobic core (B), and residue 5 in the N-terminal �-strand (C).
The upper and lower gray horizontal lines in each graph indicate the average
energy for the unfolded and folded states, respectively. In B, fluctuations
attributed to transient formation of native-like structure while the protein is
unfolded can be seen, for example, at a simulation time near 12.5 � 103

sampling periods. In C, fluctuations due to transient dissociation of strands �1
and �5 from the folded protein’s core are apparent at a simulation time near
7.5 � 103 sampling periods. For the purposes of this figure only, the data have
been smoothed by boxcar averaging with an 11-point window.

14750 � www.pnas.org�cgi�doi�10.1073�pnas.0404436101 Ollerenshaw et al.
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formation or dissolution of native-like structure. The analysis,
therefore, identifies cooperative, multiresidue interactions re-
lated to folding. The energy fluctuations of many residues
change significantly in character when the protein folds or
unfolds, so the data were divided into folded and unfolded
subsets comprising 96,184,400 and 97,263,600 simulation steps,
respectively (240,461 and 243,159 sampling periods), with sep-
arate covariance analyses performed on each.

Covariance analysis of the unfolded energy trajectory identi-
fied a transient intermediate on the protein’s folding pathway.
The most significant energy fluctuation mode found by the
analysis, v̂1, accounts for 22% of the unfolded protein’s mean
square energy fluctuations (i.e., �1�¥i�1

Nres�i � 0.22, where �i is an
eigenvalue of the energy covariance matrix defined in Eq. 3). The
components of v̂1 (Fig. 2 A) indicate that the fluctuation is mostly
localized in strands �2, �3, and �4 and the distal loop. This is
especially clear when the components are mapped onto a 3D
structure of Fyn SH3 (Fig. 2B). The mode apparently involves
the cooperative formation of the three central strands into a core
of native-like structure in an otherwise unfolded protein. Strand
�3 makes the greatest contribution to the structure, whereas �2
and �4 are less strongly involved. The data also indicate that the
RT loop is weakly involved at the point where it contacts �4.

As described in the preceding section, it is possible to obtain
a structural representation of the endpoints of conformational
f luctuations associated with a given mode v̂n by selecting struc-
tures that correspond to energy extrema in �n(t). Fig. 3A shows
an ensemble of 50 structures representing the minimum �1(t)
endpoint of the v̂1 mode from the trajectory of the unfolded
state. These structures correspond, therefore, to the lowest
energy states along the folding excursion characterized by v̂1.
Strands �2, �3, and �4 and the loops connecting them form a
well defined native-like sheet structure, as would be expected
from the eigenvalue components (Fig. 2 A and B). The ensemble
of Fig. 3A includes structures from 1% of the unfolded trajectory
data (961,600 simulation steps, 2,404 sampling periods; see
supplemental information). The ensemble establishes that
strands �2–�4 must frequently come together to form local

native-like structure while the protein is unfolded, producing
a partially structured intermediate on the protein’s folding
pathway.

A separate covariance analysis of the energy data subset
corresponding to the folded state has revealed a transient
intermediate on the protein’s unfolding pathway. Mode v̂1,
accounting for 32% of the folded protein’s mean square energy
fluctuations, has the components shown in Fig. 2 C and D. This
mode affects strand �1, strand �5 (especially residue 55, though
eigenvector components are elevated throughout the strand),
and that portion of strand �2 that contacts �1 in the native
structure. A picture emerges in which strands �1 and �5 fre-
quently dissociate from the rest of the �-sheet while the protein
as a whole remains folded, forming a transient unfolding inter-
mediate. The presence of the intermediate is confirmed by an
ensemble of structures collected from the simulation data cor-
responding to maximum �1(t) values from the trajectory of the
folded protein (Fig. 3B). In these structures, which comprise 1%
of the folded trajectory (corresponding to 972,400 simulation
steps or 2,431 sampling periods), strands �1 and �5 are disor-
dered but the core strands remain intact.

Energy fluctuation modes beyond v̂1 were investigated in both
the folded and unfolded covariance analysis results. From the
analysis of data derived from the unfolded protein, mode v̂2,
which accounts for 13% of the mean square energy fluctuations
in the unfolded state, shows an energy anticorrelation between
residues in the core of the protein and residues in the RT loop.
The anticorrelation is a consequence of the protein’s two-state
nature; these regions cannot both assume their native confor-
mations without a folding transition, so a balance in their
energies is observed. Modes beyond v̂2 for the unfolded data and
beyond v̂1 for the folded data each account for only a small
fraction of the model protein’s mean square energy fluctuations
and cannot be interpreted easily in terms of conformational
f luctuations.

Comparison to Experimental Measurements. It is illuminating to
compare the findings described above with the results of our

Fig. 2. Results of the energy-based covariance analysis and comparison with experiment. The most significant coordinated energy fluctuations observed in
unfolded (A and B) and folded (C and D) subsets of the simulation data are represented by the components of the first covariance matrix eigenvector for these
data sets. The components, which indicate the extent to which each residue in the protein participates in the fluctuation, are plotted as a function of residue
number (A and C) and mapped as colors onto the protein’s native structure (B and D). Experimentally determined exp values for the G48V mutant of Fyn SH3
(see text and ref. 21) are plotted as a function of residue number (E) and on the structure of the Fyn SH3 domain (F). Residues for which no NMR data could be
obtained are omitted from E and colored gray in F.

Ollerenshaw et al. PNAS � October 12, 2004 � vol. 101 � no. 41 � 14751
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recent relaxation dispersion NMR spectroscopy study of the
folding of a pair of Fyn SH3 point mutants (G48M and G48V),
which are less stable than the wild-type protein but have a
significantly greater folding rate. For both mutants, a low
population folding intermediate was detected in equilibrium
with the folded and unfolded states (21). A comparison of
chemical shifts measured for the intermediate, folded, and
unfolded states established that strands �2, �3, and �4 and the
distal loop connecting �3 and �4 are reasonably well structured
in the intermediates of both the G48M and G48V mutants, with
significantly less structure in other regions of the protein. The
formation of structure in the central strands of one of the
intermediates is illustrated in Fig. 2E in which exp values for
the G48V mutant are plotted vs. residue number. The value of
exp(i) � [	F(i) 	 	I(i)]�[	F(i) 	 	U(i)], where 	k(i) is the 15N
chemical shift of residue i in state k [k � folded (F), intermediate
(I), or unfolded (U)], provides a measure of the extent to which
amide site i in the protein is folded in the I state. Values of exp(i)
close to zero indicate native-like structure at this position,
whereas values close to unity are consistent with an unfolded-like
conformation (21). The exp(i) values are plotted on the struc-
ture of the folded state of the Fyn SH3 domain in Fig. 2F.
Comparing Fig. 2 B and F, a very significant correlation clearly
exists between the folding intermediate identified by simulation
in our simplified Fyn SH3 model and by experiment.

Our results also have interesting similarities to those of
protein-engineering studies of several homologous SH3 do-
mains, in which folding transition states were characterized by
using �-values from kinetic studies of mutants. Northey et al.
(22) identified in the Fyn SH3 domain a ‘‘core folding nucleus’’
of residues in strands �2, �3, and �4 that are important for
transition-state stabilization. Multiple residues in the distal
�-hairpin (comprising strands �3 and �4 and the distal loop) and
one in strand �2 are strongly implicated in the transition state for
src SH3 (23). Residues in the distal �-hairpin are also highly
structured in the transition state for the �-spectrin SH3 domain
(24). Another study concluded that formation of the distal loop
in �-spectrin SH3 in an obligatory step in forming the transition
state, because it is necessary to bring together strands �3 and �4

(25). With the exception of certain transition-state features that
are not conserved among these homologous proteins [i.e., struc-
turing of the C-terminal residues in the RT loop in src SH3 (23)
and of the 310 helix in �-spectrin SH3 (24)], a strong correlation
is observed between experiment and our simulation results.

The nature of the model’s unfolding intermediate (Fig. 3B) is
also consistent with previous experimental results. In a study on
the src SH3 domain it was found that creating a disulfide
crosslink between strands �1 and �5 greatly decreases the
protein’s unfolding rate, which indicates that dissociation of the
N- and C-terminal strands is an early step on the unfolding
pathway (26).

Comparison with the Two-State Model of Protein Folding. The fold-
ing behavior of Fyn SH3 (38) and its homologs src SH3 (39) and
spectrin SH3 (40) have previously been characterized as consis-
tent with the two-state model of protein folding. In general,
evidence of two-state folding is drawn from measurements that
do not resolve multiple sites within a protein molecule; these
include data from calorimetry, CD spectroscopy, and fluores-
cence emission spectroscopy (41). With this in mind we have
investigated the folding of our native-centric Fyn SH3 model
with simulated calorimetry techniques.

A simulated calorimetry method (see Methods and ref. 30) was
applied to data from 15 Fyn SH3 simulations run at a wide range
of temperatures and the heat capacity of the model domain was
calculated as a function of temperature, CP(T) (Fig. 4). The
resulting heat-capacity profile has a single sharp peak and � �
0.987 (the calorimetric two-state criterion is � � 1), indicating
that the thermodynamic folding behavior of the model is well
described by a two-state model by conventional standards (42).

It is interesting to consider the covariance analysis results in
light of this finding. The folding and unfolding intermediates that
we have observed are consistent with two-state folding because
they do not accumulate. Indeed, in-depth theoretical analyses
have shown that the usual calorimetric two-state criterion does
not imply that conformations with intermediate energies are
nonexistent and that the criterion, in fact, allows for a minute
population of such conformations (11, 15, 43), although it does

Fig. 3. Covariance analysis structural ensembles. Transient intermediates on the protein’s folding (A) and unfolding (B) pathways are each represented by 50
structures collected from the simulation data as described in the text. The N-terminal (strand �1, RT loop), core (strands �2, �3, �4; n-src, distal loops), and
C-terminal (310 helix, strand �5) portions of the protein are drawn in blue, black, and red, respectively. Each of the structures in the ensembles is aligned with
respect to strand �3.
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imply that such a population cannot be large (4, 11, 44).
Nevertheless, the sparsely populated intermediates revealed in
the present model study expose subtleties in the folding mech-
anism that a simple two-state picture would not lead us to
consider. Similar observations have been made in site-resolved
experimental studies of protein folding, including our NMR
study of fast-folding Fyn SH3 mutants (21), in which interme-
diates on the order of 1% of the total population of protein
molecules in solution were observed. These results emphasize
that experimental measures that do not probe multiple sites
within a molecule can mislead us toward an oversimplified view
of the folding reaction.

Conclusion
In summary, we have identified folding and unfolding intermediates
in a native-centric computational model of the Fyn SH3 domain.
The folding intermediate, observed while the protein as a whole was
unfolded, is a partially structured state formed by association of the
protein’s three central �-strands. It is strikingly similar to Fyn SH3
folding intermediates recently characterized by relaxation disper-

sion NMR methods (21) and to folding transition states elucidated
in point mutagenesis studies of several homologous SH3 domains
(22–25). The unfolding intermediate is a partially unstructured
state formed when the two terminal �-strands dissociate from the
folded domain; structures of this sort are also inferred from
experiment (26). Because our model is native-centric, to a signifi-
cant degree, the experimentally observed intermediates are a
consequence of native-like interactions (10–14). The present in-
vestigation complements recent simulation studies on homologous
SH3 domains (13, 45–48). Our finding of sparsely populated
intermediates, indicating early formation of the central �-sheet
during the folding process, is in general agreement with previous
simulation results (45–47). The present approach is limited in that
it uses only a reduced chain representation, solvation (13, 14, 45, 48,
49) is not explicitly treated, and aspects of kinetic cooperativity (15)
are yet to be addressed. Nonetheless, the simplicity of our model
allows for broad conformational sampling and energy covariance
and thermodynamic analyses over many cycles of reversible folding/
unfolding transitions, which are currently difficult to achieve in
higher-resolution models. The model’s folding/unfolding behavior
was found to display apparent two-state thermodynamics; tech-
niques such as calorimetry or CD that measure only global param-
eters would, therefore, give no information about the presence of
intermediates along the folding trajectory. This emphasizes the
importance of methods (both computational and experimental)
that can provide information on a per-residue basis to supplement
the more traditional approaches that have been used to study
protein-folding dynamics.
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